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The variational formulation of the nonlinear wavemaker problem, previously applied 
(Miles 1988) to cross-waves in a short tank, is extended to allow for slow spatial, as 
well as slow temporal, variation of cross-waves in a long tank. The resulting 
evolution equations for the envelope of the cross-waves are equivalent to those 
derived by Jones (1984) and may be combined to  obtain a cubic Schrodinger 
equation in a semi-infinite domain. The corresponding criterion for the stability of 
plane waves (i.e. for the temporal decay of cross-waves) agrees with Jones but differs 
from Mahony (1972). Weak damping is incorporated, and those stationary envelopes 
that are evanescent a t  large distances from the wavemaker are determined through 
analytical approximations and numerical integration and compared with the 
experimental observations of Barnard & Pritchard (1972) and the numerical 
calculations of Lichter & Chen (1987). These comparisons suggest that stationary 
envelopes with either no or one maximum are stable for sufficiently small amplitudes 
(solutions with multiple maxima may be stable but more difficult to attain) and 
evolve into limit cycles for somewhat larger amplitudes, but the analytical question 
of stability remains open. 

1. Introduction 
Following Mahony (1972) and Jones (1984), we consider the excitation of gravity 

waves of free-surface displacement 5 in a semi-infinite rectangular channel of width 
b and depth a? in response to the symmetric wavemaker motion 

x = ~ ( x ,  t )  = af(x) sin 2wt (0 < y < b,  - d  < x < 5) (1 .1)  

on the assumptions that 

e = k a < 1 ,  k d % l  ( k - 3  

and that the frequency of excitation approximates twice one of the resonant 
frequencies of the transverse modes. Our formulation follows that for a short tank 
(Miles 1987, hereinafter referenced by I followed by the appropriate equation number 
therein), but we now assume that the basic wave is progressive, rather than standing, 
and allow for slow spatial, in addition to slow temporal, modulation of the cross- 
wave. 

It is evident from symmetry that the boundary-value problem admits a plane- 
wave (y-independent) solution ; however, nonlinearity may break that symmetry and 
couple energy into cross-waves if w approximates one of the natural frequencies 

w ,  = (ngk); (n = 1 , 2 , .  . . , kd % 1 ) .  (1.3) 
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We assume that w approximates o1 according to 
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which determines the bandwidth of the hypothetical resonance (cf. Mahony 1972). If 
w z w, (n = 2 ,3 ,  . . .) it  is necessary only to replace k by nk in (1.2) and subsequently. 
The dominant effect of a small surface tension T is to raise the natural frequency, 
with the result that w;  and k in (1.4) are multiplied by 1 + @, where 

This correction is significant in (1.4) if 

superimposed on the plane wave, in the form 

= O(s2) .  
We pose the free-surface displacement of the hypothetical cross-wave, which is 

5 = a&{(p+iq) e-iwt}2/2 cosky+O(ea), (1.6) 

where p + iq is a dimensionless, slowly varying complex amplitude with the time and 
length scales l / s 2 w  and 1/ek (cf. Mahony 1972 and Jones 1984). We derive the 
evolution equations for p and q from an extension (I, $2) of Luke’s (1967) variational 
principle. Our trial functions are based on Havelock’s (1929) solution of the 
wavemaker problem and Rayleigh’s (1915) solution of the nonlinear standing-wave 
problem as in I, $3, but it now is necessary to include the self-interaction of the plane 
wave and the interaction between the plane wave and the cross-wave. The resulting 
partial differential equations for p and q ( $ 5 )  are equivalent to those obtained by 
Jones (1984) and may be combined to obtain a cubic Schrodinger equation for p + iq. 
Our stability criterion for plane-wave motion without damping agrees with Jones 
but differs from that of Mahony (1972) ; we also incorporate weak damping. In  $ 6, we 
examine the stationary ( p  and q independent of 7 )  solutions of the Schrodinger 
equation, including weak damping, and obtain analytical approximations and 
numerical results for the amplitude and phase of the cross-waves for various values 
of the tuning and damping parameters. These results are qualitatively similar to the 
experimental results of Barnard & Pritchard (1972) and the numerical results of 
Lichter & Chen (1987); however, Barnard & Pritchard do not obtain stationary 
waves (although they comment that their cross-waves ‘came close to maintaining a 
steady amplitude when the wavemaker motion was only slightly larger than that a t  
the margin of [plane-wave] stability’), and Lichter & Chen obtain them only in a few 
cases. J .  L. Hammack (personal communication) reports that stationary cross-waves 
are observed for sufficiently small amplitudes, but that they become unstable for 
larger amplitudes. Lichter & Chen’s results suggest that this instability corresponds 
to a Hopf bifurcation to a limit cycle. This, in turn suggests, although we know of 
no direct evidence, that there could be further bifurcations to chaotic motion in some 
parametric regime. 

2. Variational formulation 

the wave tank described in $ 1  leads to the boundary-value problem 
The assumption of motion started from rest in an incompressible, inviscid fluid in 

V 2 $ = 0  ( X < X < O O ,  O < y < b ,  - d < x < < ) ,  (2.1) 

$z = Ct++$.VC, $t+2(v$)2+gC = 0 (2 = C),  (2 .2a ,  b )  
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for the velocity potential $(x, y, z ,  t )  and the free-surface displacement [(x, y, t ) ,  where 
the subscripts x,  y, z ,  t signify partial differentiation. The boundary condition (2.3b) 
is imposed at z = - co (deep-water approximation) in $ 9 3 4 .  The null condition (2.5) 
may be replaced by a radiation condition. 

The boundary-value problem (2.1)-(2.5) may be deduced through Hamilton’s 
principle from the Lagrangian (Luke 1967 ; I ,$2) ,  

= - ~ ~ ~ [ $ , + ~ ( V $ ) 2 + g z I d v ;  (2.6) 

where the volume integral is over the semi-infinite domain bounded by the 
wavemaker (x = x), the free surface ( z  = 6) and the fixed boundaries (y = 0, b and 
z = - d ) .  An equivalent form, which incorporates (2.3), is ( I ,$2)  

where xo(y,t) and zo(y,t) are the coordinates of the intersection of the wavemaker 
(x = x) and the free surface ( z  = c). 

3. Trial functions 
Proceeding as in I ,$3 ,  but with different scaling? and allowing for slow spatial 

variation and interaction between the plane wave and the basic cross-wave, we 
posit 

( 3 . 1 ~ )  

and kc  = ~ c 0 + ~ ~ 1 + ~ 2 ~ c o o + c o l + c l l ~ + ~ ~ ~ 3 ~ ~  (3 . lb)  

where the dimensionless variables ( $o, 6) represent the first-order (linear) plane- 
wave solution of (2.1)-(2.4) with (2.5) replaced by a radiation condition, ($l,cl) 
represent the first-order cross-wave solution, ($,,, coo) represent the second-order 
interaction of ($o, co) with itself, (fi l l ,  ell) represent the second-order interaction of 
($1, cl) with itself, and ($ol, col) represent the second-order interaction between 

It suffices for the present calculation to know that the first-order plane-wave 
($0, c o )  and ($1,51). 

solution (cf. Havelock 1929) is independent of y, satisfies 

$oss+$ozz = 0, (3.2) 

= 2 ~ f ( ~ )  cos 2wt (X = 0 ) ,  #oz lzpo dx = 2~ f ( z )  dz cos 2wt, (3.3a, b) 

t The scaling, which differs from that for the short tank (1,§3), follows from the usual procedures 

1: @, 
of multiple-scale asymptotics; cf. Mahony (1972) and Jones (1984). 
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$o - FS,, e4KZ, 5, - 2FC4, (KX 9 l), (3.4a, b )  

F = 4 K  f(Z) e4Kz dz =f(0) - f’(x) e4K2 dz, (3.5) @, @,, where 

and, here and subsequently, 

C,, = cos(m~x-nut) ,  S,, = sin(mKx-nut). (3.6a, b)  

Substituting the plane-wave components of (3.1) into the expansion of (2.2) about 
z = 0 and invoking (3.6), we obtain the second-order terms 

$,, - 0, Coo - 8F2C,4 (KX >> 1) .  (3.7a, b )  

It also is implicit that the second-order approximation ($o + E $ , ~ ,  5, +eco0) satisfies 
(2.4) to second order. 

The second-order cross-wave solution of (2.1)-(2.3) for k = K may be inferred from 
Rayleigh’s (1915) second-order solution for two-dimensional (y, z in the present 
context) standing waves. Matching Rayleigh’s result to (1.6), we obtain (cf. I, 

$1 = 1/2A1,(8;X,7) coskyek2, 5, = 1/2A1(8;X,7) cosky, (3.8a,b) 
(3.4,5)) 

$11 = -A,A, , ,  511 = 4 cos2ky, (3.9a, b)  

where A,(O;T) = ~ ( X , T )  cos8+q(X,T) sin8 = %?{(p+iq) (3.10) 

and 8 = W t ,  7 = e2Ut, x = 2 8 K X .  (3.1 1 a ,  b, c )  

Substituting (3.1) into (2.1)-(2.3), expanding (2.2) about z = 0, and invoking (3.4), 
(3.7), (3.8), (3.9) and (3.11), we obtain (cf. Jones 1984) 

$01 1 / 2 F [ @ 1 ( ~ C 4 1 - ~ p X 4 1 ) +  @3(qc43+ps43)1 ‘OS k y  e‘17K2, ( 3 . 1 2 ~ )  

(3.12 b)  

(3.13) 

401% = 0 (x = 0) (3.14) 

and therefore makes a null contribution to the boundary condition (2.4) in the 
present approximation. 

61 - 1/2F[Zi(pC4i+qs4i)+Z3(qs43-~c43)1 cosky,  

CD1 = i ( l + 1 / 1 7 ) ,  G3 =-&(9+2/17),  2, =a(11-1/17), Z3=&91/17-31). 

It also is implicit that $ol satisfies 

4. Average Lagrangian 
The calculation of the average Lagrangian, following the substitution of the trial 

function (3.1) into (2.7), proceeds as in I,§4, but, in addition to the incorporation of 
($oo,{oo) and ( $ , , l , ~ o l ) ,  there are the following differences: (i) (2.1) is no longer 

contributes to L ;  (ii) the various components of the integrand in L comprise terms 
that are either oscillatory with a lengthscale l / k  or non-oscillatory in x, but the 
contribution of the former to the integral is negligible compared with that of the 
latter by virtue of Riemann’s lemma; (iii) L comprises both an integral over X and 
boundary (X = 0) terms, which are derived from the integral over the wavemaker 
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and from the end point of the free-surface integral; (iv) q4z must be replaced by 
q4z + 2e~q5, in the wavemaker integrand. The end result, after adopting X in place of x 
as a variable of integration and partial integration of the term p p x x  + qqxx, which 
is derived from (q5V2$>, is (the calculation is straightforward in principle, but care 
must be taken to  retain all terms of relevant order) 

( L - L )  1 Y =  O = a s, [P7q-Pq7+P(P2 + q 2 )  + 3 P 2  + q2)2 - ($4 + & ) I  dx ga3b 
+$B(pq)x- ,+ 0 ( e 2 ) ,  (4 .2)  

where Lo is the plane-wave ( p  = q = 0) Lagrangian, 

(4 .3)  

F is given by (3.5), C = ; (42/17-19)  = 0.202 is a measure of the plane-wave-cross- 
wave interaction terms, and 

B = Im [ 2 ~ f ( z ) + $ f ’ ( z )  e2Kr] dz-f(0). 

5. Evolution equations 
Invoking the variational principle 6s 9 d7 = 0 for (4 .2) ,  we obtain 

P , + q x x + P q + 8 P 2 + q 2 ) q  = 0, 

-q7+Pxx+PP+i(P2+P2)P = 0, 

and the boundary conditions 

(4 .4)  

(5 . la)  

(5.1b) 

p , = - B q ,  q x = - B p  ( X = O ) ,  (5 .2a ,  b) 

together with a null condition a t  X = co (see below). These are the counterparts of 
Jones’s (1984) equations (38a ,  6) and (34c) ,  respectively, after letting (Jones + 
present) X+iJ, (C,D)+2/2(q, - p ) ,  J +  -2p and L+B therein (the sign of h 
should be changed in Jones’s ( 3 6 a ) ,  (37)  and ( 3 9 ) ) .  Weak damping may be 
incorporated by replacing a, by a, + a, where 

6 
€2 . (5.3) 

and 6 is the ratio of actual to critical damping for the pure cross-wave, which (by 
hypothesis) would decay like exp ( -60, t )  in the absence of external excitation. 

Forming the complex equations (5.1 b )  +i(5.1 a )  and (5 .2a)  +i(5.2b), incorporating 
damping, and resealing according to  

p+iq = 2y$d(5,7),  5 = +x, 7 = y ~ ,  (5 .4a ,  6 ,  c )  

P + i a  = y ei@ (0 < q4 c x ) ,  B = y b ,  (5 .5a ,  6 )  

a = -  - 

where y = (a2++Pz)i, we obtain the cubic Schrodinger equation 

d,-+idq+(ei@+ld12)d = 0 (5.6) 

and the boundary condition 

d,=-  i a d *  (5 = 0), (5.7) 
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where d* is the complex conjugate of d. Finally, we replace the null condition at 
X = W b y  

(5.8) 
d -A - i e:@ 
d ( 6 ~  00). 

(Note that (5.6)-(5.8) are invariant under the reflection d4-t -d.) The parameter 

(5.9) 

in which the term c2CF2 typically is negligible, is a measure of the nonlinear 
(parametric) forcing of the wavemaker divided by (the magnitude of) the impedance 
of the cross-wave. 

It is obvious that (5.6)-(5.8) are satisfied by d = 0, which is the counterpart of the 
fixed point at  p = q = 0 in I, $ 5 .  To determine the stability of this solution, we pose 
the small perturbation 

(5.10) 

in (5.6) and (5.7), where, here and subsequently, the subscript zero implies 6 = 0 and 
$o G a r g d , ,  and invoke (5.8) to obtain 

d = do exp (AT - i a  ep2’@o[) (0 < $o < in) 

$o=icos-l(T), cos A =  (~~~-cos~q5)~-sinq5 ($<+.,<$n). (5.11) 

It follows that the solution d = 0 is unstable ( A  > 0) if a > 1. The corresponding 
perturbation grows like exp ( A T )  in time and decays like exp [ - 2-i(a2 - cos q5)i[] in 
space. 

The linearized solution of (5.6)-(5.8) for a2 < Jcosq5I, for which the solution given 
by (5.10) and (5.1 1) fails, may be established through integral-transform techniques 
(cf. Mahony 1972) and proves to be stable for a < 1. It follows that the stability 
boundary for plane-wave motion is given by = 1 or, equivalently, 

Neglecting s2CF2 and replacing B by 

B’ = ~2K[mf(z)dz-f(o)~ > 

(5.12) 

(5.13) 

we obtain Barnard & Pritchard’s (1972) equation (4). B is Mahony’s counterpart of 
B (4.4) and differs only slightly therefrom for most f ( z ) .  

6. Stationary solutions 

solutions of (5.6)-(5.8), for which d, = 0. The corresponding differential equation 
The counterparts of the finite-amplitude fixed points in I, §5 are the stationary 

d,,+ (ei$ + ldlz) d = 0, (6.1) 

is autonomous, whence it is expedient to regard the logarithmic derivative of d as 
a function of the amplitude Id( or, as proves to be advantageous, 
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through the transformation 
d l o g d  dlogA d$ 

J$ = A(&) ei@(o, ~ -- - +i- = L+iK. (6.3a) b)  
d< d5 d5 

Transforming (5.6) and (5.7) and introducing 

s = sin#, c = cos+#, (6.4a, b )  

(6.5a, b)  d d(ZK) we obtain -{Z[L2-s2(1-Z)]} = K2-C2(1+&Z), L- = -sc, 
dZ dZ 

T 

L 

CT 
and M = (L~+KZ);  = a, sin2$, = -- (Z = z0). (6.6a, b )  

The system (6.5) has a singular point a t  2 = 0 (& = m),  a t  which, from (5.8), 

L = - s ,  K = c (2 = O ) .  (6.7a, b )  

The integration of (6.5) may be started from this singular point, thereby satisfying 
(5.8), and continued to that point a t  which ( 6 . 6 ~ )  is satisfied. This determines Z,, 
after which $, is determined by (6.6b) and (6.3b) may be integrated to obtain 

(6.8a, b )  

6.1. Undamped solutions 

Exact solutions of (6.5)-(6.8) are possible if either $ = 0 (a = 0 , p  > 0) and a > 1 or 
$ = n (a = 0 , p  < 0) and a < 1. In the former case 

L = 0, K = (l+&Z);, 2, = 2(a2-1),  $, = in, ( 6 . 9 ~ ,  b,c ,d)  

A = A o  = (u2- l ) i ,  $ = $,+cT& (q4 = 0, a > l), (6.10a, b) 

which describes a progressive wave of constant amplitude. But damping, however 
small, cannot be neglected, and (6.10) qua approximation for a + 1, cannot be 
uniformly valid, as ct m ; see (6.20). 

In  the latter case (a = 0, p < 0, u < l), 

L=-( l -Z) ; ,  K = 0 ,  Zo= 1-c2, $,=+$x, (6 .1la ,b ,c ,d)  

A = 1 / 2  sech (&& tanh-'a), $ = $o (4 = n, a < l) ,  ( 6 . 1 2 ~ )  b )  

which describes a pair of trapped solitary waves (cf. Miles 1985). The alternative 
signs are vertically ordered : the upper choice yields a monotonically decaying (in f )  
envelope for which the branch point at Z = 1 lies outside of the physical domain ; the 
lower choice corresponds to a solution for which the integration is continued through 
the branch point, a t  which L changes sign and A(<) has a maximum. The shape 
( 6 . 1 2 ~ )  is at least qualitatively valid, but the approximation of constant phase 
(6.12b) is unrealistic, for small but finite damping; cf. (6.18). 

6.2. Analytical approximations 

An analytical approximation to the solution of (6.5)-(6.7) for 0 < q5 < x may be 
obtained through the expansion of L2 and K 2  (rather than L and K )  about Z = 0, 
which yields 

L2 = s2(1 -2) +C2Z2 + C 3 Z 3 + .  . . , K 2  = c2(1 ++Z) + 3C2Z2 +4C3Z3+. . . , 
(6.13u, b) 
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(6.14a, b) 
sin2 $ (25-31 cos$) sin2$ 

(5-4 ~ 0 ~ $ ) ( 1 7 - 1 5  COS$) '  
where 

Invoking (6.6a), we obtain 

5 C , Z ~ + 4 C 2 Z ~ + f ( 3  cO~$- l )Z ,+1  = a2 (6.15) 

for the determination of 2,. If u > 1 (in which domain the plane wave is unstable) 
(6.15) has one and only one positive root. If v < 1 (in which domain the plane wave 
is stable) and $ > cos-l ( f )  = 70.5" (6.15) may have either zero or two positive roots. 
Comparison with the results of the numerical integration indicates that the 
approximations (6.13) and (6.15) are satisfactory for $ 5 in  (figure l a ,  b) ,  but they 
fail (except near Z = 0) for $ > $* = 127" (see figure l c ) ,  in which domain L may 
have branch points within the domain of integration. 

It is evident from ( 6 . 1 3 ~ )  that the smallest branch point of L for 9 > #* must be 
close to 2 = 1, which suggests the approximation 

L = -s(l-Z)i. ( 6 . 1 6 ~ )  

The corresponding truncation of (6.13b) is less satisfactory in that it fails to 
reproduce the branch point of K that necessarily accompanies that of L .  We obtain 
a more suitable complement to ( 6 . 1 6 ~ )  by substituting that approximation into 
(6.5b), integrating from 2 = 0, and invoking (6.7b), which yields 

K = 2c[l+(l-z);]-1. (6.16b) 

We note that (6.16b) coincides with (6.13b) near 2 = 0 ,  where both may be 
approximated by K = c ( 1  +fZ).  But if the solution is continued through the branch 
point a t  2 = 1 the sign of the radical must be changed, and (6.16b) then is singular 
a t  2 = 0. This singular point always lies outside the physical domain (see below) but 
is nevertheless significant ; in particular, it renders the approximation (6.16) non- 
uniformly valid in the limit $ .T x. 

Substituting (6.16) into (6.6) and (6.8) and remarking that the sign of (1 -2); must 
be changed if the integration is continued through the branch point a t  Z = 1, we 
obtain 

s 2 (  1 -2,) + 4 4 1  * ( 1  -2,);]-2 = u2 (6.17 a) 

and sin2$, = +u-ls(i-~,)t  (in < k$o < i n )  (6.17b) 

for the determination of 2, and $,, and 

(6.18 a) A0 A = A * sech [sE k sech-l Zb] = 
cash 85 ( 1 - 2,); sinh $5 

and (6.18 b) 

wherein the alternative signs are vertically ordered. Letting $ 1' 71: in (6.17) and (6.18), 
we recover (6.11) and (6.12). Like (6.15), (6.17a) has only one positive root if u > 1 
and either zero or two positive roots if u < 1 and $ > cos-'(g). Comparison with the 
results of the numerical integration reveals that (6.17) and (6.18) are satisfactory 
approximations for all $ in 0 < 2, 5 $ and a 5 1.2 (figure 1 a) and for increasingly 
large ranges of 2, and u as $ increases to TC (see figure 1 b, c). 

It is evident from a comparison with (6.13) that the approximation (6.16) is 
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FIGURE 1.  u vs. 2, as given by (6.15) (-.-.-), ( 6 . 1 7 ~ )  (.....) and the numerical integration of 
(6.5) or (6.23) (-) for (a) 9 = in ,  ( b )  in  and (c) in. 

accurate for small $ if and only if 2, < 1 ,  in which case (6.18) with the upper choice 
of signs may be approximated by 

A = A ,  epsC[1 +$Z,(I -e-2sc)], @ = @,+c[[+Q~-~Z,(I  -e-2st)] (2, < I). 
(6.19a, b )  
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A = (g2-1)ie+6, 21. = 21.,+6+~(a2-i)s-l(i-e-2S5 ) ( a , O > f l 4 1 ) >  
(6.20a, b)  

which are uniformly valid (with respect to 6) counterparts of (6.10) in the 
neighbourhood of the plane-wave stability boundary (g = 1). 

The approximation (6.16) may be improved by substituting (6.16b) into (6 .5a) ,  
integrating the result from 2 = 0 to obtain 

R = k(l-Z)a, (6.21 b )  

and proceeding by iteration. The resulting expansion evidently diverges as 2 J, 0 with 
R = - (1 - Z); ,  but it does provide a valid approximation to L between its first (near 
Z = 1 )  and second (in 0 < Z < 1 )  branch points. 

6,3.  Numerical integration 

The numerical integration of (6 .5)  is straightforward if L remains negative, as proves 
to be the case if $ < $* = 127", and A(6) ,  as determined by (6 .8a) ,  then decreases 
monotonically as increases from 0 to cc (2 decreases from 2, to 0). But if $ > $*, 
L has a sequence of branch points (cf. (6 .16a))  a t  which (6 .5b)  is singular, and it then 
is expedient to introduce the alternative independent variable 

Y = ic-1ZK (6.22) 

and transform (6 .5)  and (6 .8)  to 

and 
(6.24a, b )  

The integration of (6.23) may be started from Y = 0, where 

z=o, L = - s  ( Y = O ) .  (6.25a, b)  

Expanding the solution of (6.23) and (6.25) in powers of Y ,  we obtain 

2 = 2Y - Y2+Z3 Y3+z, Y4+.  . . 

L = s[ - 1 + Y - $z3 Y2- 22, Y3+. . .I, 
(6.26 a )  

(6.26 b)  and 

where (6.27a, b)  

Numerical integrations of (6 .5)  and (6.23) were performed using a Gears routine for 
various values of $. The end results for M and L vs. 2, which may be interpreted as 
plots of r and -IJ sin2@, vs. 2, (so that 2, and are determined for prescribed $ 
and g), are plotted in figure 2. Both L and M us. 2 are single-valued if cp < $*, but 
if $ > $* there is a sequence of branch points, 2, < 2, < 2, < 2,. . . < Z,, where N 
increases with $-$*, such that L exhibits a sequence of loops (see figure 2 ) ;  in 
contrast, both L and Z are single-valued functions of Y (see e.g. figure 3) .  The 
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Z 

I L 

FIGURE 2(a+). For caption see next page. 

direction of travel along L(Z)  is determined by the requirement that 6 decrease 
monotonically from co at Z = 0 to 0 at Z = Z,, and A ( ( )  has maxima at Z,, Z,, . . . and 
minima a t  Z, ,  Z,, . . . . It follows from (6 .5b )  that K also has branch points, although 
it does not vanish, a t  Z = 2,. M vs. Z increases monotonically if# < 70.5' (figure 2a),  
exhibits a staircase-like behaviour but has bounded slope if 70.5' < # < 127' (figure 
2 b, c) ,  and exhibits a staircase-like behaviour with rearward-facing risers and 
downward-sloping steps if # > 127' (see figure 2 d ,  e ,  f ). We emphasize that L and K 
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Z 

FIGURE 2. L us. 2 (-u sin2+, vs. 2,) and M vs. 2 (a wus. 2,) for (a)  4 = in, (b )  in, (c )  in, (d) an, 
( e )  $n and ( f )  Sn. 

are independent of u, which enters only through the determination of 2, and 11',. 
Results of the numerical integration for A / A ,  and 11.- @, for u = 4 2  and 1 / 4 2  are 
plotted in figures 4 and 5.  It appears likely that those stationary solutions with more 
than one maximum may be either unstable or more difficult to attain (from any 
particular initial conditions) than those solutions with one or no maximum. 
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Y 

FIGURE 3. Z us. Y for 9 = $. 

Lichter & Chen (1987) carry out numerical integrations of the equivalents of (5.6) 
and (5.7). Renormalizing their equations (10a,b) to (5.6) and (5.7), we obtain 

in their notation, in which ae is equal to the present e. Lichter & Chen set h = 
2.666 x 1OV6/e2 and L = 5.695 x 10-5/82, which imply $ = +IT-0.02 and a = 
132.48, where 8 is the angular amplitude of the flapping wavemaker. They 
obtain stationary envelopes for a = 1.18, 1.22 and CT = 1.31 (for which the decay in 
r is very slow) and limit cycles for a = 1.48 and 1.59. The numerical integration of 
our (6.5) and (6.8) for (4, a) = (in, 1.18) reproduce the curves in Lichter & Chen’s 
figures 6 and 7a for (4, a) = (0.49n, 1.18), to within the resolution of their plots (they 
do not give plots for the other stationary envelopes, CT = 1.22 and 1.31). 

6.4. Comparison with experiment 
The only published experimental data for parametrically excited cross-waves in a 
long tank appear to be those of Barnard & Pritchard (1972). These experiments 
employed a flap-type wavemaker with 

2 
f(2) = 1 + -  ( - d  < 2 < 0). 

d 
(6.29) 

A comparison of (5.12) with their measured stability boundaries and Mahony’s 
(1972) theory is presented in table 1 (note that in (5.12), e2CF2 = 8.3 x 
6.1 x 

Barnard & Pritchard measured only slowly modulated cross-waves ; however, the 
measured envelopes in their figure 6 for n = 3 were nearly steady (‘variations in the 
amplitude of the cross-waves a t  a given position were less than about 5 % ’) and may 
be compared with the present theory. Using their measured wavemaker amplitudes,? 
frequencies and damping coefficients in (4.4) and (5 .5) ,  we obtain (e ,  4, a) = (0.023, 
0.65x, 1.20) and (0.027,0.651~, 1.43). Bearing in mind that the experimental errors 
may be of the order of 10% and that our results are sensitive to small changes in 

t The wavemaker amplitudes given in the caption of Barnard & Pritchard’s figure 6 should be 
divided by 10 (Pritchard agrees). 

for n = 2/3 is negligible). 
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5 
FIGURE ~ ( u - c ) .  For caption see facing page. 

5 

a and $ owing to the proximity of $ and $* (see above), we compare our predicted 
envelopes for ( E ,  $, a) = (0.023, gn, 1.2) and (0.023, in, 1.2) with Barnard & Pritchard’s 
data for (0.023,0.65n, 1.20) in figure 6 (a ,  b) .  The corresponding comparison for 
(0.027,0.657~, 1.43) is much less satisfactory, in part because of the non-uniqueness of 
our results for $ > &, a = 1.4, but presumably also because of the uncertainties in 
the values of $ and a, 
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FIGURE 4. A / A ,  and +-+.o vs. [ for = d2 and (a )  4 = in, ( b )  in, (c) 3% ( d )  in, ( e )  fin and ( f )  
# (the scale o f f  differs from that of a-e). Multiple solutions exist for q5 = and #n, and the 
complete profiles in ( d )  and ( f )  correspond to the largest values of 2,. The positions of the 
wavemaker for the remaining solutions are indicated by vertical bars, with corresponding 
translations of the [-scale being implicit. 
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FIQURE 5. A / &  and @--@,, 'us. [ for v = 1 / 4 2  and (a )  $ = in, ( b )  $ and ( c )  gn. The vertical 
bars indicate the positions of the wavenumber for multiple solutions (see caption of figure 4). 
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Mode E U 
n (measured) (measured) adB &g. 

2 0.022 4.6 1.13 1.10 
3 0.018 15.3 1.03 1.02 

TABLE 1. The critical value of the stability parameter g = B/ak, using Barnard & Pritchard’s 
(1972) measured value of a and either the present or Mahony’s (1972) calculated value, (4.4) and 
(5.12) respectively, for B.  Both the present and Mahony’s theories yield a critical value of u = 1. 
Note that the reported value of C, = 147 in table 1 of Barnard & Pritchard (1972) as calculated 
from Mahony’s (1972) theory is in error. It should read C, = 195. 

0.8 - 

A - -  

A ,  

0.4- 

1 
0 I 2 3 4 

x l b  

FIGURE 6. A / A , ,  with A,  = A(x/b = 0.65), vs. x/b for u = 1.20 and (a) q5 = $K and ( b )  @. The solid 
circles are the experimentally measured cross-wave envelope of Barnard & Pritchard’s (1972) figure 
6 for ( E ,  g,$) = (0.023,0.65~, 1.20). 

6.5. Stability 
The present analysis is less complete than that for standing cross-waves (I,§5) in 
that, although we have determined the stability of the progressive plane waves (in 
55 above), we have left unresolved the question of stability of progressive cross- 
waves (i.e. of the stationary solutions for d in this section).i It seems likely that this 
question can be resolved only through further refinement of either the experimental 
work of Barnard & Pritchard (1972) or the numerical work of Lichter & Chen 
(1987). 

t We are reminded of Watson’s (1945) statement, in the introduction to his chapter XI11 on 
infinite integrals, that ‘In spite of the incompleteness of this chapter, its length must be contrasted 
unfavourably with the length of the chapter on finite integrals’. 
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